

Welcome to Escoria’s documentation!

Warning

The documentation is currently under development and may be unstable.
There are areas that aren’t complete and some information may just not
be up to date anymore.

Welcome to the official documentation of the Escoria Framework [https://github.com/godot-escoria], a free and
open source framework for creating point and click adventure games based on
the Godot Engine [https://godotengine.org].

If you ever get stuck in designing your game, why not check out
the community on our Discord [https://discordapp.com] server? We’re always happy to help.

[image: Join our Discord]
 [https://discord.com/invite/jMxJjuBY5Z]The table of contents below and in the sidebar should let you easily access the
documentation for the topic of interest. You can also use the search function
in the top-left corner.

The main documentation for the site is organized into the following sections:

General

	What is a point’n’click game?

	What is Escoria?

Getting started

	Step by step

	Handling audio

	Handling backgrounds

	The game camera

	Writing Dialogs

	Common Escoria Nodes

	Escoria settings

Scripting

	ESC language reference

Advanced

	Create your own dialog manager

	Creating a custom UI

	Creating custom ESC commands

	Architecture of Escoria

	FAQ

	How to debug

	Advanced Escoria

	Game and settings load and save system

Contributing

	How to contribute to Escoria

API

	Escoria API reference

Indices and tables

	Index

	Module Index

	Search Page

Index

escoria-docs

Introduction

This repository holds the official Escoria framework documentation, which is
hosted by [https://readthedocs.org/] at https://docs.escoria-framework.org.

Building

To build the documentation locally, run the following using
Docker [https://docker.com]:

./build.sh

Output will be written to the _build/ folder. You can use
Python to host the documentation locally:

python3 -m http.server --directory _build

Contributors

By alphabetical order:
Duncan Brown - Dev Orion
Dennis Ploeger - dploeger
Julian Murgia - StraToN

ESC language reference

Variables

See Global flags.

Objects

Global IDs

All objects in the game have a global ID which is used to identify them
in commands. The ID is configured in the object’s scene.

States

Each object can have a “state”. This state is stored in the global state
of the game and as part of a savegame. The object’s state is set when the
scene is instanced.

Animations in the object’s scene can have the same name as a state.
In this case, the animation is run when the state is set.

For bg_sound and
bg_music objects, the state also represents
the music or sound that is currently running.

Active objects

Objects can be either active or inactive. Inactive objects are hidden and not
clickable.

Item activity is also handled as a special case of global flags. If the
check starts with a/, like a/elaine, you’re checking if “elaine” is
active.

:ready
> [!a/elaine]
 say player player_no_elaine_yet:"It would appear Elaine hasn't arrived yet."

Interactive objects

If you have an object that only blocks the terrain and is something you can
move behind, you probably don’t want to bother with interaction areas
and tooltip texts. In this case, just set is_interactive to
false and the item will not be checked for interactions. Its mouse
events won’t be connected, either.

Global flags

Global flags (also known as game variables) define the state of the game and
can be true/false, a number, or a string. All commands and groups can be
conditionally set based on the value of a global flag.

Global flags are, as the name implies, global, and continue to survive after
leaving the room where they are created/set. This means that a value set
early in your game is still able to be queried many rooms later.

Global flags can be created anywhere in an Escoria script as needed using the
set_global command. They don’t need to be declared in advance.

set_global <global name> <global value>

e.g. set_global number_of_keys_found 3

By default a flag will return false if you haven’t declared or defined it. This
feature allows for code like the below–that configures a room–to be
executed the first time the room is visited, but won’t be run again should
the player return to the room.

:ready

> [!room1_visited]
 # Set room1_visited variable so this code runs only once
 set_global room1_visited true

 # Play the window's sunrise animation
 anim window play_sunrise_effect

Inventory

The inventory is handled as a special case of global flags. All flags
with a name starting with i/ are considered to be an inventory object with
the inventory object’s global ID following. Example:

Waits for 5 seconds if the player has the key in its inventory
wait 5 [i/key]

Events

All ESC scripts are divided into a series of events which in turn run
commands or dialogs.

To use an event in your script, specify the name of the event preceded by a
colon. All commands following the event identifier are considered part of that
event until another event is defined in the same script file.

:push
say player "I pushed the door."
say player "It didn't do anything."

A new ("pull") event starts here
:pull
say player "The door is now open"

Built-in events

Some events are hard-coded into Escoria. The ones that are
“internal engine use only” are

	print

	load

	room_selector

	transition_in

	transition_out

Events that are considered “for game developer use” are

	init : Run first as part of your primary Escoria game script. This is where
you would place the commands for a company logo cutscene.

	exit_scene : Will be called when “Is Exit” is enabled on an ESCItem and
the player “uses” that item. You might play a closing door sound here for
example.

	newgame : This is what is called when “Start Game” is chosen from your menu.
The main use would be to have a change_scene command here to load your
first game room.

	setup : This runs first as part of loading a room. Anything coded here will
happen before the room is visible (i.e. before the “transition in”).

	ready : These are commands that will run when a room loads, after it becomes
visible (i.e. once “:setup” completes and after the “transition in”).

Plugin Events

Any plugins you use may define their own events that you can script
actions for. The sample user interfaces, for example, include events for
look and use. If you are using the 9-verb interface and click the look
button followed by an object, then any code inside the :look event in that
object’s script will be run.

User-created events

You can create an event with any name you like (though avoiding event names
Escoria already uses, e.g. init, is suggested to avoid bugs and/or
confusion.)

Most of the time you’ll define events as part of creating your UI (e.g. you
might create a nose icon and attach it to a “sniff” event). See
https://docs.escoria-framework.org/en/devel/advanced/create_ui.html#verbs
for further details.

This will teleport the player to the appropriate point in the scene
depending on the last visited scene. The last visited scene is stored in the
special global state ESC_LAST_SCENE.

Events understand a series of flags. The flags that are currently
implemented include the following:

	TK stands for “telekinetic”: The player won’t walk over
to an item before saying a line of dialog

	NO_TT stands for “No tooltip”: The tooltip is hidden for the
duration of the event

	NO_UI stands for “No User Interface”: The UI is hidden for the duration
of the event. Useful for when you want something to look like a cutscene
but don’t want to disable input for skipping dialog.

	NO_SAVE disables saving: Use this in cutscenes and anywhere a
badly-timed autosave would leave your game in a messed-up state.

Commands

Commands consist of a single word followed by some parameters. Parameters can
be a single word or a string in quotes.

one parameter "player", another parameter "hello world"
say player "hello world"

Conditions

In order to run a command depending on the value of a flag, use [] with a
list of comma-separated conditions. All conditions in this list must be true.
Placing the character ! before a flag can be used to negate that flag.

Example:

runs the command only if the door_open flag is true
say player "The door is open" [door_open]

runs the group only if door_open is false and i/key is true
> [!door_open,i/key]
 say player "The door is close, maybe I can try this key in my inventory"

Additionally, there is a set of comparison operators for use with global
integers: eq, gt and lt, all of which can be negated.
Example:

runs the command only if the value of pieces_of_eight is greater than 5
set_state inv_pieces_of_eight money_bag [gt pieces_of_eight 5]

Groups

Commands can be grouped using the character > to start a group and
incrementing the indentation of the commands that belong to the group.
Example:

>
 set_global door_open true
 anim player pick_up
end of group

Groups can also use conditions:

Present the key if the player already has it
> [i/key]
 say player "I got the key!"
 anim player show_key

Blocking

Some commands will block execution of the event until they finish;
others won’t. See the command reference for details on which commands
block.

List of commands

Dialogs

Dialogs are specified by writing ? with optional parameters,
followed by a list of dialog options starting with -. Use ! to
end the dialog.

The following parameters are available:

	avatar: The path to a scene displaying an avatar to be used in the UI.
Defaults to no avatar. To set only the parameters below, set this
parameter’s value to -

	timeout: Time allowed to select an option. Default value 0. After the
specified time has elapsed, timeout_option will be selected
automatically.
If the value is 0, there is no timeout (i.e. no time limit to select an
option).

	timeout_option: Index of option selected when timeout is reached.
Default value of 0. Index begins at 1.

Options support translation keys by prepending and separating them with
a : from the rest of the text.

Example:

character's "talk" event
:talk
? avatar timeout timeout_option
 - MAP:"I'd like to buy a map." [!player_has_map]
 say player "I'd like to buy a map"
 say map_vendor "Do you know the secret code?"
 ?
 - UNCLE_SVEN:"Uncle Sven sends regards."
 say player "Uncle Sven sends regards."

 > [player_has_money]
 say map_vendor "Here you go."
 say player "Thanks!"
 inventory_add map
 set_global player_has_map true
 stop

 > [!player_has_money]
 say map_vendor "You can't afford it"
 say player "I'll be back"
 !
 stop

 - "Nevermind"
 say player "Nevermind"
 !
 stop
 - "Nevermind"
 say player "Nevermind"
 !
 stop
repeat

 _images/adding_items_blackboard.png
ex Inspector Node

E o <> a8

® Blackboard W

Filter properties Q
@ Script Varizbles

Global Id © blackboard

Esc Script O resyfrooms/pub B

Is Exit on

Is Trigger on

Trigger In Verb trigger_in

Trigger Out Verb trigger out

Is Interactive ¥ On

Is Movable on

Player Orients On Arri ¥ On

<

Interaction Direction 0
TooltipName) Blackboard

Default Action

Default Action Invento

_images/adding_items_zy.png

_images/add_blackboard_esclocation.png

_images/angles_visualization.png

_images/character_animations_additional.png
animations: Animation Frames:

E T B BO T

Speak ight Jester
speakup
speak up Jester
walk down

walk up
walk up jester

walk right
walk right Jester

Speed: 5FPS
Loop. -

@Output Debugger Audio Animation SpriteFrames.

_images/character_animations_original.png
svimations:
E T
e nght
e wp
spea down
Spak doun right
speak iht
speakup
valkdon |
valk ight
valkup

_images/angles_visualization2.png

_images/character_animated_sprite_node.png
Scene

+ @ fe
v 8 mak
® sprite

0 cotision
@ ey

-1~ dialog position

.

00000

_images/character_create_animation_dirangles.png
@PResourc v

Size: 8

[0] [empty] ~

@ New ESCDirectionAngle

(i Load

8B 8 & &8 <

_images/character_create_animation_directions.png
Size: 8 o]
@PReso v
Mirrored Oon
Resource fini)
Local To Sce Oon
Path
Name
@PReso v
_ backright
Mirrored Oon
Resource fini)
Local To Sce Oon
Path
Name
B oo -
Animation left
Resource fini)
Local To Sce Oon
Path
Name

_images/character_animations_tres.png
Scene

+ P rern

& spre
0 cotision
& evug

dialog position

L]

00000

Inspector

E &
& mark
Filter properties

efault

on Inventory

ombine Wher

Combine Is One Way

Animation Player N

[

Pooistringarray (size 0)

on
on
fempty] v
E—
on
300 e
1
Assign. <
Assign. <
mark animations res E
Quick Load
®]
(i Losd
® | o
@ | & cer

B

_images/character_animations_tres2.png
& mark

& spre
0 cotison
& evug

dialog position

L]

00000

]

<

@ markanimations esterires

Filte

Dir Angles

Directions

Size:

nimation

Mirrored

Resource
Local To Scene

Path

Name

@ script Varisbies

Aray (size 8)

Aray (size 8)

s
@ resoure v
@ resoure v
@ resoure v
@ resoure v
@ resoure v

PER-]

Qi

Bl 8 8 8 ©

on

on

) resiigamelcharacters/markim

=]

_images/character_create_animation_settings.png
@PResourc v

Dir Angles Array (size 0)

Directions Array (size 0)
Idles Array (size 0)
Speaks Array (size 0)

_images/character_create_animations.png
Animations:

E T
back
backright
front
frontleft
idleback
idlebackright

Animation Frames:

8 0O O

A

"

«8
+

_images/character_create_animations_resource.png
Selectable On
Animations [empty] v

@ New ESCAnimationResource
q

¢ (mLoad

_images/character_create_position.png

_images/character_create_scene.png

_images/character_create_collision.png
31 Inspector Node

B W o <> a8
0O CollisionShape2D i
Filter properties Q
O Collisionshape2D
Shape © 0 CapsuleShape2D v
Disabled on
One Way Collision on
One Way Collision Margin ~~_1
©O Node2D
> Transform
> ZIndex
 Canvasltem
> Visibility
> Material
O Node
Editor Description
Pause Mode Inherit v
Process Priority 0 <

Script f— .

_images/character_create_folder.png
FileSystem
) resi/
Search files Q

H Favorites:

> I addons

M characters
B graham

